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Abstract 

Drug resistance is a major obstacle in the field of pre-clinical and clinical therapeutics. The 

development of novel technologies and targeted therapies have yielded new modalities to 

overcome drug resistance, but multidrug resistance (MDR) remains one of the major challenges in 

the treatment of cancer. The ubiquitin-proteasome system (UPS) has a central role in regulating 

the levels and activities of a multitude of proteins as well as regulation of cell cycle, gene 

expression, response to oxidative stress, cell survival, cell proliferation and apoptosis. Therefore, 

inhibition of the UPS could represent a novel strategy for the treatment and overcoming of drug 
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resistance in chemoresistant malignancies. In 2003, bortezomib was approved by the FDA for the 

treatment of multiple myeloma (MM). However, due to its limitations, second generation 

proteasome inhibitors (PIs) like carfilzomib, ixazomib, oprozomib, delanzomib and marizomib 

were introduced which displayed clinical activity in bortezomib-resistant tumors. Past studies have 

demonstrated that proteasome inhibition potentiates the anti-cancer efficacy of other 

chemotherapeutic drugs by: i) decreasing the expression of anti-apoptotic proteins such as TNF-α 

and NF-kB, ii) increasing the levels of Noxa, a pro-apoptotic protein, iii) activating caspases and 

inducing apoptosis, iv) degrading the pro-survival protein, induced myeloid leukemia cell 

differentiation protein (MCL1), and v) inhibiting drug efflux transporters. In addition, the 

mechanism of action of the immunoproteasome inhibitors, ONX-0914 and LU-102, suggested 

their therapeutic role in the combination treatment with PIs. In the current review, we discuss 

various PIs and their underlying mechanisms in surmounting anti-tumor drug resistance when used 

in combination with conventional chemotherapeutic agents.  
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Introduction 

Globally, cancer is the second leading cause of mortality, causing an estimated 600,000 deaths in 

United States in 2018 (Siegel et al., 2018). One of the hallmarks of cancer is the dysregulated and 

uncontrolled cell proliferation (Collaborators, 2016). The major clinical impediment in the 
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treatment of cancer remains the development of multidrug resistance (MDR) that occurs primarily 

during chemotherapy (Assaraf et al., 2019; Bar-Zeev et al., 2017; Coppola et al., 2017; Cui et al., 

2018; Gonen and Assaraf, 2012; Leonetti et al., 2019; Levin et al., 2019; Livney and Assaraf, 

2013; Mansoori et al., 2017; Niewerth et al., 2015; Zhitomirsky and Assaraf, 2016).   MDR is 

defined as the survival of cancer cells during or following exposure to a broad spectrum of anti-

cancer drugs (Amawi et al., 2019; Li et al., 2016; Zahreddine and Borden, 2013; Zhitomirsky and 

Assaraf, 2016). Cancer cells display resistance to anti-cancer drugs via a plethora of molecular 

mechanisms including: 1) Overexpression of ATP-binding cassette (ABC) efflux transporters 

which extrude a multitude of structurally and functionally distinct cytotoxic drugs from cancer 

cells (Sun et al., 2012); 2) Impaired drug uptake via qualitative (i.e. inactivating mutations) or 

quantitative alterations (i.e. downregulation) of influx transporters, thereby decreasing the 

intracellular concentration of drugs (Consortium et al., 2010); 3) Evasion of apoptosis via distinct 

anti-apoptotic mechanisms (Chen et al., 2018); 4) Enhanced DNA damage response and repair 

(Broustas and Lieberman, 2014); 5) Enhanced tolerability of stressful tumor microenvironment 

(TME) cues or conditions (Quail and Joyce, 2013); 6) Increasing the biotransformation and 

metabolism of drugs to less active or inactive congeners(Inaba et al., 2013); 7) Mutations in drug 

target proteins that diminish or abolish the interaction of drugs with their specific cellular 

targets(Jones et al., 2009), and 8) Drug sequestration within organelles away from their cellular 

targets (Fig. 1) (Aleksakhina et al., 2019; Cree and Charlton, 2017; Gottesman et al., 2002; 

Mashouri et al., 2019; Zahreddine and Borden, 2013).   

The ubiquitin proteasome system (UPS) and the immunoproteasomes have been postulated to be  

bona fide targets for novel anti-cancer drugs and chemosensitizers that block the proteolytic 

activities in this central cellular system (Adams, 2004; Cloos et al., 2017; Gandolfi et al., 2017; 
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King et al., 1996; Landis-Piwowar et al., 2006; Niewerth et al., 2015; Roeten et al., 2018). 

Specifically, proteasome inhibitors (PIs) constitute one of the most important classes of 

chemotherapeutic drugs  to have emerged for the treatment of MM and mantle cell lymphoma in 

the past two decades, and currently form the foundational  drugs in the treatment of these 

hematological malignancies (Fricker, 2019; Gandolfi et al., 2017). Three antitumor drugs  in this 

class of PIs have been approved by the United States Food and Drug Administration (FDA), the 

first-in-class is bortezomib (Velcade), the second-generation chemotherapeutic being carfilzomib 

(Kyprolis), an irreversible inhibitor of the chymotrypsin activity of the proteasome, whereas the 

first oral PI was  ixazomib (Ninlaro) (Fricker, 2019; Gandolfi et al., 2017). The remarkable 

antitumor efficacy of this class of antitumor drugs is due to the hypersensitivity of myeloma cells 

to the inhibition of the 26S proteasome, which plays a critical role in the pathogenesis and 

proliferation of the disease. Proteasome inhibition results in multiple deleterious downstream 

effects, including inhibition of NF-κB signaling, the accumulation of misfolded and unfolded 

proteins, leading to endoplasmic reticulum (ER) stress and unfolded protein response (UPR), 

downregulation of growth factor receptors, suppression of adhesion molecule expression, and 

inhibition of angiogenesis; resistance to PIs may arise through cellular responses mediating these 

downstream effects (Gandolfi et al., 2017; Thibaudeau and Smith, 2019) 

Numerous studies have shown that the UPS modulates or degrades the majority of cellular proteins 

and plays a critical role in maintaining protein homeostasis (Ciechanover, 1994; Jana, 2012; Sun 

et al., 2016). Furthermore, the UPS regulates the cell cycle, apoptosis, cell differentiation, 

angiogenesis, and drug resistance (Ciechanover, 1994; Hochstrasser, 1995; Orlowski and Dees, 

2003). As such, decreased proteasome activity has been linked to aging and several age-related 

neurodegenerative pathologies, thereby highlighting the importance of the regulation of the UPS. 
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While the proteasome has been traditionally viewed as a constitutive machinery of proteolysis, 

recent studies revealed that distinct regulatory mechanisms can affect its activity (Ciechanover, 

2017; Mayor et al., 2016).  

The interaction of a molecular substrate with the proteasome requires a prior enzymatic 

conjugation to ubiquitin, a 76 amino acid protein, which results in degradation of the ubiquitinated 

protein by the 26S proteasome (Ciechanover, 2017; Ciehanover et al., 1978; Hershko et al., 1980, 

1979; Mayor et al., 2016). Ubiquitination involves the ubiquitin activating enzymes, E1, the 

ubiquitin conjugating enzyme, E2 and ubiquitin ligases known as E3 (Wolf and Hilt, 2004). The 

26S proteasome is a large multi-subunit protein complex and the UPS is a major pathway that 

regulates the degradation of a multitude of proteins in eukaryotes (Mani and Gelmann, 2005) (Fig. 

2).  Proteins are ubiquitinated by these series of enzymes and are recognized by the proteasome 

(Almond and Cohen, 2002; Voutsadakis, 2007). The 26S proteasome is a large complex composed 

of a 20S catalytic core and one or two regulatory subunits (Groll et al., 1997; Unno et al., 2002).  

The regulatory subunit recognizes the ubiquitinated proteins and the target molecule dissociates 

from ubiquitin and is transferred to the core 20S proteasome (Wolf and Hilt, 2004). The 20S 

proteasome consists of 4 rings, comprised of two sets of α and β subunits, that are arranged 

symmetrically with the α rings surrounding the inside of the β rings (Winter et al., 2017). Each α 

and β rings is formed by seven different subunits, α 1-7 and β 1-7 (Ciechanover, 1994; Goldberg 

et al., 1997; Hochstrasser, 1995; Satoh et al., 2019) 

These subunits have proteolytic activity, including the β-1, which has a caspase-like activity. The 

β-1 subunit cleaves acidic residues and the β-2 is endowed with a trypsin-like activity and cleaves 

basic residues, whereas the β-5 subunit has a chymotrypsin-like activity and cleaves hydrophobic 

residues (Glickman and Ciechanover, 2002). The regulatory subunit has a lid and a base that is 
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attached to both ends of the 20S core subunit and the 19S proteasome lid plays a role in 

deubiquitination, an enzymatic reaction that catalyzes the removal of  the target molecule from the 

polyubiquitin chain by 9 or more non-ATPase subunits (Tanaka, 2009). The 19S base has 6 

ATPase as well as 4 non-ATPase subunits and is a multifunctional complex that recruits, and 

unfolds the target proteins and directs them into the core 20S proteasome (Bai et al., 2019; Bochtler 

et al., 1999; Livneh et al., 2016; Schmidt et al., 2005).  

The UPS plays a central role in regulating key cellular functions. For example, during the cell 

cycle, progression of cells from the G2 phase to the M phase requires cyclin-dependent protein 

kinase, cdc2, that phosphorylates mitosis-regulating proteins and their regulatory partners, cyclin 

B, which are considered to be cell cycle checkpoints (An et al., 2018; Rosamond, 1995; Venuto 

and Merla, 2019; J.-H. Wang et al., 2019). Once the cell completes mitosis, the anaphase 

promoting complex (APC), an E3 ligase, ubiquitinates these promoting factors which are then 

degraded by the proteasome, allowing the cell to reenter the G1 phase (Hershko, 1999; 

Vodermaier, 2004). Another important cellular mechanism that is regulated by the UPS is 

apoptosis. For cell growth and survival, UPS is crucial, whereas for apoptosis to occur, there needs 

to be an inhibition of UPS. For example, p53 activity is tightly regulated by UPS and it plays a 

crucial role in the suppression of tumors (Adrain et al., 2004; Friedman and Xue, 2004; Gupta et 

al., 2018; Sun et al., 2004). Another example is that PIs can induce endoplasmic reticulum (ER) 

stress and produce apoptosis in many cancers (Best et al., 2019). 

Previous studies have shown that UPS plays an important role in oncogenesis, cancer 

development and chemoresistance (Cao and Mao, 2011; Gandhi et al., 2014; Huang et al., 2017; 

Lu et al., 2014; Micel et al., 2013; Wu et al., 2015; Yontem, 2013). E3 ligases determine the fate 

of each protein by binding to the target protein and transferring ubiquitin from the E2 enzyme to a 
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lysine residue in the target protein (David et al., 2011). Thus, E3 ligases play an important role in 

the final process of the UPS cascade (Liu et al., 2015). Although the survival rate of patients has 

been increased with the availability of novel anti-cancer drugs, chemoresistance remains a major 

impediment towards the achievement of curative treatment of various human malignancies 

(Assaraf et al., 2019; Cree and Charlton, 2017; Gacche and Assaraf, 2018; Gonen and Assaraf, 

2012; Li et al., 2016; Wijdeven et al., 2016; Zhitomirsky and Assaraf, 2016). As E3 ligases have 

been shown to play a role in oncogenesis, researchers have begun to determine the role of E3 

ligases in cancer chemoresistance, as well as the underlying mechanisms mediating 

chemoresistance (de Wilt et al., 2012; Franke et al., 2016, 2012; Jeon et al., 2016; Nelson et al., 

2016; Niewerth et al., 2015, 2014a, 2014b; Oerlemans et al., 2008; Petzold et al., 2016; Tanaka et 

al., 2016; Xu et al., 2016; Yoshino et al., 2016; Zhang et al., 2016). 

Human E3 ligases contain more than 600 members and based on characteristic domains and  are 

classified into 3 types:1) HECT E3 (homologous to the E6-associated protein carboxyl terminus) 

with about 28 members; 2) RING finger E3s, the largest class with approximately 600 members, 

and 3) RBR (RING between RING) type E3s with 18 members (Berndsen and Wolberger, 2014; 

Sluimer and Distel, 2018; Weber et al., 2019). HECT E3s determine the specificity of 

ubiquitination (Sluimer and Distel, 2018). E3 ligases catalyze the transfer of ubiquitin to the 

substrate protein by a two-step reaction where ubiquitin is transferred to E3 and then from E3 to 

the substrate protein (Thibaudeau and Smith, 2019). Studies have reported that RING-finger E3 

ubiquitin ligases are the most abundant type of E3 ligases (Metzger et al., 2012). They have a zinc-

binding domain called RING (also known as the U-box domain) and a ring domain that mediates 

the direct transfer of ubiquitin to the substrate protein (Lipkowitz and Weissman, 2011). The U-

box family of ubiquitin ligase E3 in eukaryotes is required for protein synthesis and it contains 
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about 70 amino acids (Hatakeyama and Nakayama, 2003). U-box proteins  mediate ubiquitination 

in the absence of the HECT and RING domains (Hatakeyama and Nakayama, 2003). E3 ligases 

play a crucial role in the ubiquitin-proteasome pathway (Yang et al., 2018).  

 The process of ubiquitination can be reversed by a specific group of enzymes called 

deubiquitinases (DUBs) and there are 100 human DUBs that are members of the cysteine protease 

family (Dou and Zonder, 2014; Kapadia and Gartenhaus, 2019; Kaushal et al., 2018). The 

mechanism of deubiquitinase includes cleavage of the bond between the ε-amino group of the 

lysine residue on the target protein and C-terminal glycine of the ubiquitin molecule (Komander 

et al., 2009). DUBs can be subdivided into 6 classes: 1) ubiquitin-specific proteases (USPs); 2) 

ubiquitin carboxy-terminal hydrolases (UCHs); 3) ovarian-tumor proteases (OTUs); 4) Machado-

Joseph disease protein domain proteases; 5) JAMM/MPN domain-associated metallopeptidases, 

where the MPN domain containing proteins are metallopeptidases (Zn++ ion metalloproteinases) 

that display JAMM motif which has a catalytic center for the hydrolysis of the linkage between 

ubiquitin and the target protein (Echalier, 2014), and 6) monocyte chemotactic protein-induced 

protein (MCPIP) (Fortelny et al., 2014; Fraile et al., 2011). 

The USPs exist in various forms and the DUBs catalytically release the target protein that is 

attached to the ubiquitin molecule, thereby preventing its proteasomal degradation (Clague et al., 

2012). DUBs play an important role in balancing receptor degradation (Sowa et al., 2009), the 

endocytic pathway (Bowers et al., 2006) and various signaling pathways (Buus et al., 2009). 

The current review discusses the effect of clinically approved UPS inhibitors and their role in 

surmounting resistance to conventional anti-cancer drugs (Table 1) and the structures of these PI 

drugs discussed in the current review, are shown in the Fig. 3. 

Proteasome Inhibitors (PIs)-Detailed description 
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1. Bortezomib (Velcade)  

Bortezomib (Fig. 1A), the first in-class dipeptide boronate PI, was approved by the FDA in 2003 

for the treatment of MM (Teicher et al., 1999).  Bortezomib is a boronic dipeptide which reversibly 

inhibits the chymotrypsin-like activity of the β5 subunit and partially inhibits the trypsin-like 

activity of the β1 subunit of the 20S proteasome, especially at high concentrations (Lü and Wang, 

2013). However, bortezomib does not inhibit the β2 subunit (de Bruin et al., 2016). Inhibition of 

the proteasome suppresses the proteasome-mediated degradation of ubiquitin-conjugated 

inhibitory proteins of the kappa-beta (kB) family, IkB (Chen et al., 2011); IkB binds to 

phosphorylated nuclear factor kappa-light-chain-enhancer in activated B cells (NF-kB),  

preventing its translocation to the nucleus, where it functions as a TF (Hideshima et al., 2001b). 

Bortezomib indirectly suppresses NF-kB signaling (Rajkumar et al., 2005). Indeed, NF-kB was 

shown to induce resistance to platinum-based drugs (e.g., cisplatin) in pancreatic  cancer 

(Almoguera et al., 1988), prostate cancer (Newmark et al., 1992) and SCLC (Bassères et al., 2010). 

The phosphorylated form of NF-kB is sequestered by IkB in the cytoplasm and this complex is 

degraded by the UPS (Oeckinghaus and Ghosh, 2009). Thus, PIs that block the UPS would be 

hypothesized to decrease NF-kB expression and thereby promote apoptosis. Overall, by increasing 

the degradation of NF-kB, bortezomib down-regulates the expression of certain proteins that 

produce anti-apoptotic effects, thereby decreasing cell survival by enhancing apoptosis. The anti-

cancer efficacy of bortezomib may also result from an increase in the pro-apoptotic protein, Noxa 

(Qin et al., 2005). This protein can induce apoptosis by: 1) augmenting the activation of caspases 

(Suzuki et al., 2009; Zhang et al., 2010);  2) producing changes in the mitochondrial membrane 

that bring about the release of apoptogenic proteins from the mitochondria (Letai et al., 2002); 3) 

interacting with, and promoting the degradation of the pro-survival protein, myeloid leukemia cell 
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differentiation protein (Mcl1) (Czabotar et al., 2013; Moldoveanu et al., 2014) and 4) inducing the 

phosphorylation of the anti-apoptotic protein, B-cell lymphoma-extra-large (Bcl-xL (Qin et al., 

2005), which may be disabled in its capacity to bind Bax, resulting in apoptosis upon Ser 62 

phosphorylation (PMID:18974096). The anti-cancer efficacy of the conventional 

chemotherapeutic drugs 5-fluorouracil, cisplatin, paclitaxel and doxorubicin was significantly 

increased by bortezomib, when compared to bortezomib monotherapy (Orlowski et al., 2016; 

Yerlikaya et al., 2013; Zhao et al., 2015);  this experiment was performed in a Lewis rat lung 

carcinoma model. Bortezomib was administered intraperitoneally (i.p.; 1 mg/kg/day) on days 0, 4, 

7 and 18, in combination with 5-fluorouracil (30 mg/kg i.p.) on days 7 and 11 and this treatment 

regimen produced a significant delay (the treatment group had 0% large lung metastases compared 

to 45% in the control group) in tumor growth (Teicher et al., 1999). Bortezomib, in vitro and in 

vivo, has efficacy in MM cells resistant to mammalian target of rapamycin (mTOR), 

phosphoinositide-3-kinase (PI3K) and serine/threonine-specific protein kinase (Akt) inhibitors 

(Varga et al., 2014). In vitro data indicated that incubation of MM cells with 2 nM bortezomib for 

72 hours increased the cytotoxicity of doxorubicin and melphalan by inducing DNA damage 

(Richardson et al., 2003). Bortezomib also significantly downregulated the expression of apoptosis 

inhibitors such as NF-kB and tumor necrosis factor-alpha (TNF-α) (Hideshima et al., 2001a) and 

suppressed the genotoxic stress response pathway proteins, mut S homologues 2 and 6 (involved 

in DNA mismatch repair) and uracil DNA glycosylase (involved in base-excision repair and 

protection from oxidative DNA damage) (Mitsiades et al., 2003).  Despite the efficacy of bortezomib 

in treating patients with MM, there have been reports of drug resistance (Kumar and Rajkumar, 

2008; Robak et al., 2018; Shah and Orlowski, 2009). Since bortezomib interacts with the 

proteasome β5 core particle to inhibit its chymotrypsin-like activity, mutations in the β subunits 
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impair the binding of bortezomib to the β5 subunit, resulting in bortezomib resistance both in vitro 

as well as in MM patients (de Wilt et al., 2012; Franke et al., 2012; Lü et al., 2008; Verbrugge et 

al., 2012). Clonal sublines of HT-29 colon adenocarcinoma cells, selected for resistance to 

bortezomib upon long term exposure, harbored point mutations in the β5 subunit, and displayed 

30-fold resistance to bortezomib, compared to wild type HT29 cells.  In 2014, bortezomib was 

also approved by the FDA for the treatment of previously untreated patients with mantle cell 

lymphoma (Raedler, 2015). Clinical data indicated that in MM patients, bortezomib can produce 

peripheral neuropathy, fluid retention, thrombocytopenia, fatigue, nausea, vomiting, and diarrhea 

(Schwartz and Davidson, 2005). Overall, bortezomib monotherapy was efficacious in treating MM 

and mantle cell lymphoma and data suggest that it may be useful in combination with other anti-

cancer drugs including 5-flurouracil (Wang et al., 2016) cisplatin, cyclophosphamide, 

doxorubicin, and thalidomide (Gerecke et al., 2016; Konac et al., 2015).  

The protein human anterior gradient 2 (AGR2) belongs to the disulfide isomerase family and is 

highly expressed in estrogen receptor-positive breast cancer cells (Thompson and Weigel, 1998), 

lung cancer (Chung et al., 2012), prostate cancer (Hu et al., 2012) and pancreatic cancer (Dumartin 

et al., 2011). Moreover, the expression level of AGR2 can modulate the response to 

chemotherapeutic drugs and it has been considered to be a potential tumor marker (Hrstka et al., 

2010; Zhao et al., 2009). AGR2 binds to vascular endothelial growth factor (VEGF) and increases 

vascular endothelial growth factor receptor (VEGFR) signaling, thereby decreasing  the efficacy 

of bevacizumab (Avastin), a humanized monoclonal antibody that has been approved for colon 

cancer treatment, by binding to VEGF, and preventing it from interacting with its receptor VEGFR 

(Jia et al., 2018). In male athymic mice (tumors were generated by the subcutaneous inoculation 

of NSCLC A549 cells), the i.p. injection of 0.4 mg/kg of bortezomib and 10 mg/kg of bevacizumab 
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(every week for three weeks) significantly decreased tumor weight and volume compared to 

animals that received bevacizumab monotherapy (D. Wang et al., 2019).  

2. Carfilzomib  

Carfilzomib (Fig. 1B) is a second generation, irreversible epoxyketone PI which is also used in the 

treatment of MM (Leleu et al., 2019). Carfilzomib covalently attacks the active site Thr1 residue 

of the β5 subunit under the formation of a morpholine ring, resulting in inhibition of the 

chymotrypsin-like activity of the proteasome (Kuhn et al., 2007). Carfilzomib induces 

programmed cell death by 1) activating c-Jun-N-terminal kinase; 2) producing mitochondrial 

membrane depolarization; 3) eliciting the release of cytochrome c from mitochondria, 4) 

increasing the levels of Noxa, a pro-apoptotic, member of the Bcl-2 protein family, and 5) 

activating caspase-3/caspase-7 (Etlinger and Goldberg, 1977; Hershko et al., 1982; Parlati et al., 

2009). In a randomized, phase 3, open-label study, one group of patients with refractory MM 

received bortezomib (1.3 mg/m2, s.c.) and 20 mg p.o. dexamethasone and the other group received 

carfilzomib (20 mg/m2, s.c.) and 20 mg p.o. dexamethasone.  The end point of the study was 

progression-free survival (PFS); remarkably, the median PFS was 18.7 months in the carfilzomib 

group and 9.4 months in the bortezomib group (Dimopoulos et al., 2017). Carfilzomib significantly 

decreased mortality compared to bortezomib and it was the first drug to increase the overall 

survival of MM patients (Dimopoulos et al., 2017). 

Mechanistic studies indicate that carfilzomib was more efficacious than bortezomib in increasing 

the phosphorylation of Janus kinase and caspase activity in acute lymphoblastic leukemia cell lines 

(Kuhn et al., 2007). Carfilzomib was 2-fold more potent than bortezomib in inducing caspase 

activity, which may explain the increased sensitivity of a MM cell line to carfilzomib (Kuhn et al., 
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2007). Importantly, carfilzomib (3 mg/kg i.v. given twice weekly for 42 days) surmounted 

bortezomib resistance in a human Lagk-1A MM severe combined immunodeficient (SCID) mouse 

model (Sanchez et al., 2014). Carfilzomib significantly reversed the resistance to the alkylating 

drug, melphalan, in melphalan-resistant MM 8226.LR5 cells and also reversed the resistance to 

dexamethasone in dexamethasone-resistant MM1.R cells (Kuhn et al., 2007). Although 

carfilzomib is an option for refractory MM patients (Siegel et al., 2012), a large number of these 

patients displays resistance to carfilzomib treatment (Shah et al., 2018). The upregulation of P-

glycoprotein and the overexpression of the catalytic subunits of proteasome are the main causes of 

resistance to carfilzomib therapy (Ao et al., 2012; Zang et al., 2014). To delineate the molecular 

mechanism underlying carfilzomib resistance, human H727 bronchial carcinoid tumor cells 

(which have high levels of β1i and β5 subunits, whereas β1 expression is undetectable) were 

incubated with 20 nM carfilzomib for 4 hours.  The results indicated that the activities of the 

catalytic subunits, β5, β5i and β1i were blocked by carfilzomib, whereas β1 activity remained 

intact, suggesting that differences in catalytic subunit expression and sensitivity to PIs are 

associated with the development of resistance to carfilzomib (Lee et al., 2019). 

Carfilzomib (27 mg/m2 i.v.) significantly increased the efficacy of lenalidomide (25 mg p.o.) and 

dexamethasone (40 mg p.o.) in patients with relapsed or progressive myeloma (Jakubowiak et al., 

2012; Niesvizky et al., 2013). Lenalidomide is a thalidomide derivative which has direct anti-

tumor efficacy, via inhibition of angiogenesis, and exerts an immunomodulatory activity. In vivo, 

lenalidomide induces tumor cell apoptosis directly, as well as indirectly via inhibition of bone 

marrow stromal cell support, through anti-angiogenic and anti-osteoclastogenic activities, and via 

immunomodulatory activity. The protein cereblon (an E3 ligase) is expressed at low levels in 

patients with MM tumors that are resistant to lenalidomide and the levels of cereblon may be 
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regulated by the UPS and thus, inhibition of the proteasome would be poised to increase cereblon 

levels, thereby increasing the efficacy of lenalidomide (Lopez-Girona et al., 2012). Furthermore, 

the activation of the wingless-related integration site (Wnt)/β-catenin signaling pathway is 

positively correlated with resistance to lenalidomide (Bjorklund et al., 2011). Therefore, 

lenalidomide resistance could be surmounted by increasing proteasome-mediated degradation of 

proteins in the Wnt/β-catenin pathway (Bjorklund et al., 2011). In 2012, carfilzomib was approved 

by the FDA for use as monotherapy or in combination with dexamethasone or lenalidomide plus 

dexamethasone, for the treatment of patients with relapsed or refractory MM who have failed to 

respond to one or more previous drug regimens (Jakubowiak et al., 2012). However, the use of 

carfilzomib is limited due to adverse effects that include cardiac toxicity, acute renal failure, 

pulmonary toxicity, pulmonary hypertension, liver toxicity and teratogenicity (Perel et al., 2016).  

3. Ixazomib  

Although bortezomib and carfilzomib displayed efficacy in MM treatment, the use of these drugs 

is limited by their routes of administration (i.v. or s.c.). Thus, ixazomib (Fig. 1C) was developed 

as the first oral PI for the treatment of relapsed or refractory MM(Moreau, 2014; Raedler, 2016). 

Ixazomib is a dipeptidyl leucine boronic acid that reversibly blocks the chymotrypsin-like activity 

of the β5 subunit of the 20S proteasome (Chauhan et al., 2011; Lee et al., 2011). The proteasome 

dissociation half-life for ixazomib is relatively short (18 min) and is ultimately re-available to re-

enter tumor cells and other tissues (Kupperman et al., 2010); hence, when compared to bortezomib, 

this shorter 20S proteasome dissociation half-life is believed to play an important role in its 

improved tumor and tissue distribution. Direct comparison with bortezomib revealed that ixazomib 

has improved pharmacokinetic and pharmacodynamic profiles and showed superior antitumor 

activity in both solid tumors and hematologic xenograft mouse models when compared to 
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bortezomib (Kupperman et al., 2010). Ixazomib (dose ranging from 1-125 mg/m2 given i.v. on day 

1, 8 and 15 of a 28 day cycle for up to 12 cycles), compared to bortezomib, produced a longer 

duration of tumor proteasome inhibition and increased the antitumor efficacy in OCI-Ly10 and 

PHTX22L mouse models of lymphoma (Assouline et al., 2011). In the human MM cell line 1S, 

incubation with 12.5 nM ixazomib for 48 hours significantly induced apoptosis and inhibited 

growth in both drug sensitive 1S cells and the OPM1 cell line that is resistant to conventional 

cytotoxic compounds including bortezomib, without significantly affecting the viability of normal 

non-malignant cells (Chauhan et al., 2011). The incubation of MM cells from patients who were 

resistant to lenalidomide, vorinostat or dexamethasone, with 50 nM ixazomib for 48 hours, 

significantly increased the cytotoxicity and anti-cancer efficacy of these cytotoxic drugs (Chauhan 

et al., 2011). Ixazomib was approved by the FDA in 2015 for use in combination with lenalidomide 

and dexamethasone for the treatment of MM patients (Shirley, 2016). Clinical data indicated that 

ixazomib has untoward side effects including nausea, vomiting, diarrhea, constipation, rashes and 

thrombocytopenia (Kumar et al., 2017).   

4. Delanzomib  

Delanzomib (Fig. 1D) is an orally active, P2 threonine boronic acid PI that can reversibly inhibit 

chymotrypsin-like and caspase-like activities of the proteasome (Dorsey et al., 2008). In vitro, 

bortezomib (10 nM) and delanzomib (20 nM) were equipotent in inhibiting distinct proteasome 

subunits (β5 and β1), albeit when compared to bortezomib, delanzomib displayed a more favorable 

cytotoxicity profile in normal human epithelial bone marrow progenitor and bone marrow-derived 

stromal cells (Piva et al., 2008). However, phase I and II trials with delanzomib indicated that it 

did not significantly inhibit disease progression in MM patients and the trials were terminated 

(Vogl et al., 2017). Thus, delanzomib monotherapy is unlikely to be used for the treatment of MM.  
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However, delanzomib in combination with conventional anti-cancer drugs or along with 

bortezomib may be efficacious in treating MM patients. For example, delanzomib (3 mg/kg i.v. 

twice a week for a period of 70 days) increased the efficacy of dexamethasone (1.25 mg/kg i.p. 

daily) or lenalidomide (30 mg/kg p.o. daily) in a xenograft CB17 SCID multiple myeloma mouse 

model (Sanchez et al., 2010). The inhibition of MM cell viability by melphalan (10 mg/kg i.p. once 

weekly for 3 weeks) or bortezomib (1.2 mg/kg i.v. once a week for 4 weeks) was synergistically 

increased by delanzomib (3 mg/kg i.v. twice weekly for 4 weeks) (Piva et al., 2008). Moreover, 

data suggest that the use of a combination of delanzomib with melphalan or delanzomib with 

bortezomib prevents the growth of melphalan-resistant as well as bortezomib-resistant tumors 

(Sanchez et al., 2010). Therefore, it is possible that clinical studies could be conducted to determine 

the efficacy of delanzomib for the treatment of MM in combination with specific anti-cancer drugs. 

The adverse effects of delanzomib include nausea, vomiting, anorexia, neutropenia and pyrexia 

(Vogl et al., 2017).   

5. Oprozomib 

Oprozomib (Fig. 1E) is an oral tripeptide epoxyketone that irreversibly inhibits the chymotrypsin-

like activity of the proteasome (Rajan and Kumar, 2016). It has a longer duration of action 

compared to bortezomib and induces apoptosis through the activation of caspase 3, 8 and 9 

(Chauhan et al., n.d.). It has been reported that angiogenesis plays a very important role in the 

progression of MM (Giuliani et al., 2011; Podar et al., 2001). In vitro, oprozomib (10 nM) blocked 

angiogenesis in human umbilical vein endothelial cells (Chauhan et al., 2010). In a human MM 

xenograft mouse model with severe combined immunodeficiency, a combination of oprozomib 

(40 mg/kg p.o.), dexamethasone (1 mg/kg i.p.) and pomalidomide (10 mg/kg p.o.) for 77 days was 

significantly more potent than oprozomib monotherapy or a combination of any duo of the drugs 

Jo
ur

na
l P

re
-p

ro
of



18 
 

(Sanchez et al., 2015). The major adverse effects produced by oprozomib were anemia, nausea, 

thrombocytopenia, hypotension, diarrhea and vomiting (Vij et al., 2014). The unfolded protein 

response (UPR), a cellular stress response associated with endoplasmic reticulum (ER) stress, may 

induce apoptosis if it is unmitigated (Walter and Ron, 2011). It is possible that the proteasome may 

be a negative UPR regulator, and this was reversed by oprozomib in human hepatocellular cancer 

HepG2 cells treated with 400 nM oprozomib for 48 hours (Vandewynckel et al., 2016). In two 

experimental models of hepatocellular carcinoma, the administration of both nelfinavir (250 

mg/kg/day i.p.), a protease inhibitor and antiretroviral drug currently used in the treatment of 

human immunodeficiency virus-based AIDS, and salubrinal (1 mg/kg/day i.p.), a specific inhibitor 

of dephosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α), for 4 weeks, 

significantly increased the anti-cancer efficacy of oprozomib (30 mg/kg p.o. given three times a 

week). These results suggest that oprozomib may be used in combination regimens to treat certain 

cancers (Vandewynckel et al., 2016). In addition, oprozomib can induce apoptosis in lung cancer 

cells by activating caspase 3 and poly ADP ribose polymerase (PARP) cleavage, independent of 

p53 activity (Zhu et al., 2019). 

6.  Marizomib (Salinosporamide A) 

Marizomib (Fig.1F), a novel β-lactone-γ-lactam PI which underwent phase I and II clinical trials 

for the treatment of solid tumors and hematological malignancies (Feling et al., 2003), is currently 

undergoing phase III clinical trials for the treatment of newly diagnosed glioblastoma multiforme 

(NCT03345095). It is the first natural PI derived from the marine actinomycete bacteria 

Salinosporamide tropica (Feling et al., 2003). Remarkably, marizomib is a next generation 

inhibitor that produces a prolonged inhibition (≥72 h) of the proteasome compared to other PIs 
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(Potts et al., 2011). It irreversibly inhibits the β1, β2 and β5 subunits which are responsible for the 

proteolytic activity of the proteasome.   

Immunoproteasomes mediate the formation of antigenic peptides that are bound to major 

histocompatibility class I (MHC class I) proteins (Strehl et al., 2005). There are data indicating 

that high levels of immunoproteasomes are present in MM cells (Singh et al., 2011). Marizomib 

(10 nM) induced apoptosis in D-54 human glioma cells (Di et al., 2016) by activating caspase-8 

(Potts et al., 2011). This induction decreased the expression of NF-kB, which repressed cell growth 

and survival pathways (Ahn et al., 2007) Furthermore, marizomib  also decreased the levels of  IL-

6, TNF-α and IL-1β (Chauhan et al., 2005). Incubation of the MM cell line, 1S, with marizomib 

(1.25 nM) along with the immunomodulatory and anti-angiogenic drug, pomalidomide (2.5 µM), 

for 24 hours, induced apoptosis and produced a synergistic effect compared to either drug alone at 

these concentrations (Das et al., 2015). Clinical data indicated that colorectal cancers (CRC) 

express high levels of NF-kB, inducing resistance to irinotecan and 5-fluorouracil (Cusack et al., 

2000; Kojima et al., n.d.; Voboril et al., 2004). In refractory cases of CRC, in vitro studies indicated 

that marizomib (200 nM for 4 hours) decreased NF-kB levels by increasing the level of IkB 

(Cusack et al., 2006). Thus, marizomib resensitizes CRC to the anti-tumor drugs, SN-38, 5-

flurouracil, oxaliplatin and avastin. The incubation of the human pancreatic cell line, Panc-1, with 

marizomib (200 nM for 24 hours) also reversed resistance to gemcitabine (1 µM) (Sloss et al., 

2008). The major adverse effects produced by marizomib were fatigue, infusion site pain, nausea 

and diarrhea (Harrison et al., 2016) (Townsend et al., 2009).  

Recent studies indicated that cancer cells can acquire resistance to PIs (Zheng et al., 2017). The 

factors that cause this drug resistance include: 1) proteasome complex mutations (Soriano et al., 

2016); 2) increased expression of drug efflux transporters (Gupta et al., 2015); 3) formation of 
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alternative pathways (Riz et al., 2015). Another mechanism of drug resistance involves certain 

microRNAs (miRNAs). miRNAs are noncoding RNAs that regulate cell proliferation, 

differentiation, development and apoptosis (Ha and Kim, 2014; Maimaiti et al., 2015). 

Furthermore, miRNAs play an important role in the development of drug resistance by targeting 

the genes that modulate the response to chemotherapeutic drugs (Allen and Weiss, 2010; Just et 

al., 2019; Ma et al., 2010; Si et al., 2019). For example, the miRNA precursors Let-7A2, Let-7D, 

Let-7E, Let-7F2 were downregulated in MM cells resistant to bortezomib, carfilzomib and 

ixazomib (Malek et al., 2016). Compared to the drug-sensitive counterpart cell line, RPMI8226 

(Malek et al., 2016), the X-box binding protein (XBP), a bZIP (Basic Leucine Zipper Domain) 

transcription factor, can regulate stress-induced apoptosis of cancer cells (Gambella et al., 2014) 

in MM patients and loss of this transcription factor is involved in the development of resistance to 

bortezomib (Leung-Hagesteijn et al., 2013). The levels of the unspliced transcript of XBP1 were 

significantly lower in ixazomib-resistant cells compared to ixazomib-sensitive parental cells 

(Mitra et al., 2017).  As described above, mutations in PSMB5 (encoding for the β5 subunit of the 

proteasome) are one of the important mechanisms of acquired resistance to PIs (de Wilt et al., 

2012; Franke et al., 2012; Lü et al., 2008; Verbrugge et al., 2012). It has been shown that mutations 

in PSMB5 and PSMB7 occur in bortezomib-resistant CRC HT 29 cells (Suzuki et al., 2011). 

Another mechanism of drug resistance is the overexpression of MDR efflux pumps e.g., ABCB1, 

and ABCC1 (Kale and Moore, 2012). There is a report showing that ABCB1 [P-glycoprotein (P-

gp)] overexpression significantly decreases the accumulation of bortezomib and carfilzomib in 

acute lymphocytic leukemia CEM/VLB cells (Verbrugge et al., 2012). Tariquidar, an ABCB1/P-

gp inhibitor (5 µM for 24 hours) markedly increased  the in vitro sensitivity of resistant MM cells 

to the PIs, bortezomib and carfilzomib (Muz et al., 2017).   
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Immunoproteasomes 

Immunoproteasomes are predominantly present in cells of hematopoietic origin (McCarthy and 

Weinberg, 2015) and are derived from the constitutive proteasomes (Kloetzel and Ossendorp, 

2004; Tanaka, 1994). Constitutive proteasomes are present in all cell types and are involved in 

degradation of target proteins (Cromm and Crews, 2017; Ichihara and Tanaka, 1995; Morozov and 

Karpov, 2019; Tanaka, 2009). The expression of immunoproteasomes is enhanced by cytokines 

(e.g., TNFα and interferon α) which are produced and secreted during inflammation and certain 

types of infections (Shachar and Karin, 2013). Immunoproteasomes generate various peptides for 

the MHC class I complexes that are presented to lymphocytes by antigen presenting cells (Fehling 

et al., 1994). The constitutive proteasome has a 20S core that consists of α- and β- rings (7 subunits 

in each) and the β subunits (β 1, 2 and 5) have proteolytic activities  (DeMartino and Slaughter, 

1999). The overall structure of the constitutive and immunoproteasome are similar, but the 

immunoproteasome has different catalytic subunits (Ferrington and Gregerson, 2012). 

Immunoproteasomes contain 3 distinct pairs of active sites, β5i, β1i, and β2i, which are different 

from their constitutive β5, β1, and β2 counterparts.   

Immunoproteasomes are present in antigen presenting cells (Haorah et al., 2004) and the presence 

of inflammatory cytokines such as interferon-γ elicits the replacement of the regular β subunits 

with different subunits as abovementioned, including LMP2(β1i), MECL-1 (β2i) and LMP7(β5i) 

(Ahn et al., 1995; Basler et al., 2019; Glynne et al., 1991; Kelly et al., 1991; Ortiz-Navarrete et al., 

1991; Pletinckx et al., 2019; Realini et al., 1994; Tanahashi et al., 1997; Xie et al., 2019).  

It has been reported that transplant rejection occurred in mice lacking immunoproteasomes, 

suggesting that they are involved in regulating the immune response (Kincaid et al., 2011). The 

inhibition of the catalytic subunits of proteasomes is an important mechanism for the treatment of 
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cancer and an increased expression of immunoproteasomes occurs in several cancers, including 

prostate, MM and lung cancer (Ho et al., 2007; Wehenkel et al., 2012).  

FDA-approved PIs do not display specificity for constitutive proteasomes when compared to 

immunoproteasomes (Kisselev et al., 2012). Interestingly however, the decreased expression of 

immunoproteasomes can enhance the response to bortezomib in MM patients (Zhang et al., 2016). 

It has been postulated that the development of immunoproteasome selective inhibitors may have 

efficacy in the treatment of certain cancers and autoimmune diseases as other nonselective 

inhibitors can produce adverse effects due to their lack of selectivity (Dubiella et al., 2015; Johnson 

et al., 2017). 

ONX-0914 is a tripeptide epoxyketone that selectively inhibits the β5i subunit of the 

immunoproteasome (Miller et al., 2013). The progression of nephritis was significantly decreased 

in an MRL/lpr mouse model of systemic lupus erythematosus, following the administration of 10 

mg/kg i.v. (once daily) for 13 weeks (Ichikawa et al., 2012). KZR-616, a derivative of ONX-0914, 

has already completed a phase I study and is being developed for the  treatment of autoimmune 

diseases (Lickliter et al., 2018). The administration of 15 mg/kg s.c. of ONX-0914 and 0.5 mg/kg 

s.c. of bortezomib twice weekly for 60 days, significantly increased the overall survival of animals 

in an NSG mouse model compared to treatment with only  bortezomib  (Downey-Kopyscinski et 

al., 2018).  

Apart from its selective β5i inhibitory action, ONX-0914 can inhibit the catalytic subunit,  trypsin–

like activity-bearing β2i subunit, at concentrations significantly greater than those required to 

inhibit the β5i subunit (Muchamuel et al., 2009). The s.c. administration of 10 mg/kg of ONX-

0914, once a day for 35 days, to five week old Apc Min/+ and LMP 7-/- mice (colon cancer 

models), significantly decreased:  1) the incidence of CRC tumors, as well as 2) tumor initiation 
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and growth (Koerner et al., 2017). The incubation of MM MM1.S cells with ONX-0914 (500 nM) 

significantly increased the sensitivity of these cells to 100 nM bortezomib or carfilzomib (Downey-

Kopyscinski et al., 2018).  

LU-102 is a peptide epoxyketone that inhibits the β2 subunit (which has the trypsin-like activity) 

of the proteasome and sensitized cancer cells to both bortezomib and carfilzomib (Mirabella et al., 

2011). Based on the increased expression of β2 subunit in cells that are resistant to bortezomib (a 

β5 inhibitor) (Rückrich et al., 2009), β2 was identified as a crucial factor in regulating the activity 

of β5-targeted PIs (Britton et al., 2009). LU-102 is the first irreversible, β2-selective PI (Geurink 

et al., 2013) and it enhanced the cytotoxicity of β5 inhibitors in MM cells (Britton et al., 2009; 

Mirabella et al., 2011). This is an important observation as bortezomib, carfilzomib and ixazomib 

primarily inhibit the β5 subunit of the proteasome, which is the catalytically active site in protein 

degradation (Arendt and Hochstrasser, 1997; Chen and Hochstrasser, 1996). The incubation of the 

triple negative breast cancer (TNBC) cell lines, MDA-MB-231 MDA-MB-468, SUM149, HCC38, 

HCC1187 and HCC1937, with 3 µM LU-102 for 48 hours, significantly increased the cytotoxic 

efficacy of bortezomib and carfilzomib in these TNBC cells (Weyburne et al., 2017). The 

incubation of MM 1.S cell lines with 0.9 µM ONX-0914 for 1 hour, followed by incubation with 

1 µM LU-102 for 47 hours, produced a 3-8-fold decrease in the IC50 values of ONX-0914 (i.e. 

cells were sensitized to ONX-0914) (Downey-Kopyscinski et al., 2018). 

Nuclear factor erythroid derived 2-related factor 1 (Nrf1) is a transcriptional activator of 

proteasomes that increases proteasome synthesis upon proteasome inhibition, thereby restoring 

proteasome activity (Radhakrishnan et al., 2010; Steffen et al., 2010). MG132, a PI (1 µM for 10 

h), the boronation of which yielded bortezomib, induced the expression of proteasomal subunit 

genes (PSM) in wild type mouse embryonic fibroblasts (MEF) but not in Nrf1-/- MEF cell lines 
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(Chan et al., 1998), suggesting that Nrf1 upregulates PSM gene expression in cells incubated with 

a PI (Radhakrishnan et al., 2010). Upon complete inhibition of β2 subunit of the proteasome, Nrf1 

became inactive and insoluble, preventing the recovery of proteasomal activity and increasing the 

sensitivity to β5 inhibitors (Sha and Goldberg, 2016).   

 

 

 

Conclusion  
 

Proteasome activity is associated with various cellular mechanisms and human diseases. 

Cumulative data indicated that increased proteasome activity can occur in certain cancers 

(Voutsadakis, 2017), whereas decreased proteasome activity facilitates the development of 

neurodegeneration and other underlying disorders (Tomaru et al., 2012). Expression of 

immunoproteasomes has been reported for various cancers, including prostate, MM and lung 

cancer. Therefore, the use of PIs represents a proven potent strategy for the treatment of cancer. 

The present article focused on the role of the UPS in cancer drug resistance, the mechanism of 

action of specific UPS inhibitors and their efficacy in restoring the chemosensitivity of cancer cells 

to specific chemotherapeutic drugs. Data from numerous studies indicate that UPS inhibition can 

restore the sensitivity of cancer cells to conventional chemotherapeutic drugs. The first UPS 

inhibitor, bortezomib, was approved by FDA for the treatment of MM and mantle cell lymphoma. 

However, due to limitations including potency and drug resistance, researchers developed next 

generation PIs including carfilzomib, ixazomib, oprozomib, delanzomib and marizomib, which 

display more favorable pharmacokinetic and pharmacodynamics profiles, greater potency and 

specificity. Since immunoproteasomes also play a vital role in cancer, the development of 

immunoproteasome inhibitors such as ONX-0914 and LU-102, are essential for cancer 

chemotherapy. The combination of UPS inhibitors reviewed in this paper with conventional anti-
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cancer drugs, produced synergistic activity that may significantly improve patient outcomes during 

chemotherapy.   
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Figure legends 

Fig.1. Multiple drug resistance mechanisms in cancer (as shown in blue rectangles) 

Mechanisms that produce MDR in cancer cells include decreased drug uptake, enhanced DNA 

repair, metabolism and inactivation of drugs, evasion of apoptosis, mutations in the drug target 

proteins, drug sequestration in other organelles away from the target, enhanced tolerability to 

tumor environment, and overexpression of ABC efflux transporters.  

 

Fig.2. An illustration of the multi-subunit structure and functions of the ubiquitin 

proteasome system (UPS)  

Ub, ubiquitin. E1, ubiquitin activating enzyme. E2, ubiquitin conjugating enzyme. E3, ubiquitin 

ligases. 20S, catalytic core of proteasome. 19S, regulatory subunits of proteasome. 2 sets of α 

and β rings each, formed by 7 different subunits.  

 

Fig.3. The structures of proteasome inhibitors that sensitize cancer cells to conventional 

chemotherapeutic drugs  
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Table. Mechanism of action, uses and ADR of various UPS inhibitors. 
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Compound Structural 

Class 

Target of interaction Binding 

kinetics 

FDA  

status 

Doses Routes Adverse effects 

Bortezomib Peptide 

boronic acid 

Inhibits B5 and partial 

inhibition of  β1 

reversible Approv

ed for 

MM 

1.3mg/m²/dose IV twice 

weekly for 2 weeks  

IV peripheral neuropathy, fluid 

retention, thrombocytopenia, 

fatigue 

Carfilzomib Peptide 

epoxyketone 

Inhibits  β5 subunit irreversible Phase II 20 mg/m² in Cycle 1 on Day 

1,8 and 15 

IV Cardiac toxicity, acute renal 

failure, pulmonary toxicity 

Ixazomib Dipeptidyl 

leucine 

boronic acid 

Inhibits 

chymotrypsin- like 

activity of β5 subunit 

reversible Phase I 4 mg PO on days 1, 8, and 15 

of a 28-day cycle 

IV/oral 

 

diarrhea, constipation, rashes, 

thrombocytopenia 

Delanzomib Peptide 

boronic acid 

Inhibits chymotrypsin 

and caspase-like 

activity 

reversible Phase I 1.5 mg/m2.  I.V. 

administration on days1,8, 

15 of a  28-day cycle 

IV nausea, vomiting, anorexia, 

neutropenia and pyrexia 

Oprozomib Peptide 

epoxyketone 

Inhibits chymotrypsin 

like activity of  β 5 

subunit 

irreversible Phase I 

 

150 to 330 mg/d for 2 of every 

7 days (2/7 schedule) 

oral anemia, nausea, thrombocytopenia, 

hypotension 

Marizomib β-lactone-γ-

lactam  

Inhibits β1, β2 and  

β 5  

Irreversible Phase I 0.7 mg/m2 IV fatigue, infusion site pain, nausea 

and diarrhea 
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On days 1, 4, 8, 11 of 28-day 

cycle 
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